

Feeder call

Terminal process

Feeder call – Terminal view

Terminal View Challenges

- Mainline \rightarrow Feeder
 - Feeder Operators, Vessel Schedules: 3-4 weeks ahead
 - Container Operators vessel Schedules: 3+ month ahead
 - ightarrow bookings for transshipment cannot be processed right away
 - Alignment of Container Operator vessel Scheduling with Feeder Operator Schedules is crucial
 - Incoming Data from the Container Operator cannot be linked to the oncarring feeder
 - On Carriage information from Bookings and COPRAR DIS cannot be processed
 - Terminal reporting (e.g. TPFREP, COARRI) with wrong voy. No.

- Feeder \rightarrow Mainline
 - Alignment of vessel Schedules and voyage for on carriage is very helpful
 - For Next POD Feeder operator often sends FDEST instead of POD (Terminal needs POD)

Terminal view - requests

- On Carriage Information must be provided before discharge, latest before Sailing from preavious port!
 - Vessel, Voy., POD
- Vessel Oper V
 - Alternative: VSA Partner provide link from own voyage no. to vessel op. Voyage.
 - VSA partners
 - Shipping line A voy no. 10E1ABC / 10E1ABC \rightarrow relates to Vess. Voy. No. 005W/006E
 - Shipping line B voy no. $12345 / 12346 \rightarrow$ relates to Vess. Voy. No. 005W/006E
 - Shipping line C voy no. DOIW / DOIE \rightarrow relates to Vess. Voy. No. DO5W/DD6E
- When containers are rolled to another vessel, there must be immediate and continuous communication between all three stakeholders sharing new Oncarriage Information.

Terminal view - berth planning

1. contracts + berth/terminal layout

 \rightarrow strategy

2. schedules

→ creation of voyage in TOS → detailed berth planning

The berth window

Strategy

\rightarrow Berth window:

- service
- day
- Berthing/operation time

	Berth 1		Berth 2	Berth 3	
mon	service A		service B	service C	
tue	service D	service E			
wed	service F		service G	service H	
thu	service l				
fri			service J	service C	
sat	service K			service M	
sun			service L		

Berth assignment upon schedule info

Constant communication with stakeholders in the port

Yard planning

Vessel planning

Unique identifcation

Vessel identification (IMO number) means correct vessel specifics - essential for berth and vessel planning

Incoming data needs to be linked to the call – outgoing data must provide for the unique identification of the call

Yard planning - request

- On-carriage data is essential for a correct automatic stacking
 - without optimal yard position the need for restacking is high
 - Without on carriage Information stacking has to be done according to default stack setting.
 - received O/B carrier info "Truck" or units having category "Import" while afterwards they been collected by Deepsea or Feeder
 - Terminals have yard and house keeping incl. allocation filters in use but will fail if not met
 - E.g. category, container weight, container type, specials
- Much as possible twin pairs from a module, as few rehandles
- Without complete on carriage information default stacking strategy will take place:
 - Default Yard allocation
 - \rightarrow Discharge units will be stacked in a non-optimal stacking position
 - \rightarrow not ideal stacking positions for the container

→ Vessel operator and shipping lines should use common voyage not just for the schedule but also in all the messages. Alternatively supply information on how their line voyage no. links to vessel operator voy. No.

Activities of planning department

- Setup a final sequence of vessel handling
 - Common, Feeders will be discharged layer by layer from inside to outside, because of their small ballast tanks and slow trimming
- Monitoring the expected ETD during vessel operation handling

Terminal Planning Departm. Dependencies

- IFTSAI Voyage Nbr Line Operator/Feeder operator
 EDI Messages depend especially on correct voyage, Containertype, Specials information, Location and Terminalcode, Stow instruction..
 - BAPLIE, MOVINS, COPRAR load, COPRAR discharge, COPARN – Booking

Terminal view pain points

Missing/incorrect information	painpoints	impact on
No service information	No automatic berth assignment possible	Manual effort
Vessel identification	No match on TOS vessel master data	Berth assignment vessel planning
Wrong/missing voyage number in schedule	Link of all incoming data to the vessel call fails	All communication between stakeholders
Different voyage numbers used by different stakeholders	Link information to the correct voyage fails	Communication terminal – other stakeholders
Rolled container	Missing actual communication between line – Terminal – Feeder	Yard and vessel planning
Different voyage no. 's Vessel operator – VSA partner	No link possible on recipients' side	(automatic) processing
Use of Non-Standard-Codes	Use of incorrect codes for UN/LOCODE, terminal code, liner code, ISO code,	Manual updating of data, errors due to missinterpretation

Feeder call – Carrier view

Carrier View - Challenges

- Increased communication complexity
 - Usage of different Voyage Identifiers between the Stakeholders
 - Lack of Transparency for Carrier and Customer (e.g., vessel exchange)
 - The increased complexity is limiting the chance for quick decision making
- Limited option to automize process steps
 - Schedule data exchange
 - Re-booking of shipments (e.g., in case of a feeder vessel exchange)
- High costs to keep track of feeder schedule adjustments
 - Extensive e-mail traffic
 - Risk for high error rate causing operational costs (e.g., due to manual schedule maintenance)

Carrier View - Requirements

- Simplification of the Communication
- Real-Time Data Exchange
 - Schedule Data

- Shipment Status (e.g., Loading Confirmation by the Feeder Operator)
- Shipment Adjustments (e.g., new feeder connection in case of a short-shipment)

S M D G

• Automation of the Data Exchange & consecutive process steps

Feeder call – Feeder view

Feeder View - Challenges

- Need to maintain a flexible network whilst give stable connections to customers
 - Short sailing times with narrower buffer mean feeders need to be more creative with their network deployments to maintain reliability.
 - Our customers require stable connections that they can plan their cargo flows around

Tracking connection feasibility

- Lack of transparency on connection feasibility between Mother Vessel, Terminal and Feeder.
- Lack of clear guidelines for what is a 'stable connection'

Opportunity to recover connections in response to changes

- More visibility and faster exchange of data across the industry, can also result in raw and crude changes in allocation of bookings across vessels without clear standards.
- When there is a change time is needed for the feeder to react to the changing situation to recover their schedule to recover a connection. Sometimes this is feasible, sometimes this is not.
- If feeders don't have an opportunity to recover, then they can lose bookings and have empty space

Feeder view - Requirements

- Use a unique identifier code for connections in the schedule down to terminal pair level
 - To better cater for changes and facilitate smoother communication
 - Instead of voyage numbers or port call references, which lack granularity

Clear rules & standards for transshipment connections

- Clear rules & standards that give feeders the ability to recover connections through smooth dialogue with terminals and carriers.
- Better predictability around connections
- Similar to IATA standards around connecting flights

Feeder call

Case Study

FXS – Service 2 vessels 14 day rotation

Rotation:-Rotterdam Helsinki Kotka Rotterdam

Terminal pair	TEU
RTM > HEL	400
RTM > KTK	300
HEL > KTK	100
HEL > RTM	300
KTK > RTM	200

ELX – Service 2 vessels 14 day rotation

Rotation:-Rotterdam Tallinn Riga Rotterdam

Terminal pair	TEU
RTM > TLL	400
RTM > RIX	300
TLL > RTM	300
RIX > RTM	200

Case Study

TEU

600

500